Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

نویسندگان

چکیده

The purpose of this paper is to establish bilinear estimates in Besov spaces generated by the Dirichlet Laplacian on a domain Euclidian spaces. These are proved using gradient for heat semigroup together with Bony paraproduct formula and boundedness spectral multipliers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Kernel Estimates for Dirichlet Fractional Laplacian

In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...

متن کامل

Regularity estimates for elliptic boundary value problems in Besov spaces

We consider the Dirichlet problem for Poisson’s equation on a nonconvex plane polygonal domain Ω. New regularity estimates for its solution in terms of Besov and Sobolev norms of fractional order are proved. The analysis is based on new interpolation results and multilevel representations of norms on Sobolev and Besov spaces. The results can be extended to a large class of elliptic boundary val...

متن کامل

L1-Estimates for Eigenfunctions of the Dirichlet Laplacian

For d ∈ N and Ω 6= ∅ an open set in R, we consider the eigenfunctions Φ of the Dirichlet Laplacian −∆Ω of Ω. If Φ is associated with an eigenvalue below the essential spectrum of −∆Ω we provide estimates for the L1-norm of Φ in terms of its L2-norm and spectral data. These L1estimates are then used in the comparison of the heat content of Ω at time t > 0 and the heat trace at times t′ > 0, wher...

متن کامل

Sharp Estimates of the Embedding Constants for Besov Spaces

Sharp estimates are obtained for the rates of blow up of the norms of embeddings of Besov spaces in Lorentz spaces as the parameters approach critical values.

متن کامل

Heat kernel estimates for the Dirichlet fractional Laplacian

Abstract. We consider the fractional Laplacian −(−1)α/2 on an open subset in Rd with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian inC1,1 open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C1,1 open set. Our results are the first sharp twoside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124640